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Theory of superflow in two-dimensional states of 3He in an 
arbitrary potential well 

Grzegorz Haran and Lucjan Jacak 
Instilute of Physics, Wroclaw University of Technology, W y k e i e  Wyspiadskiego 27, 50- 
370 Wroclaw. Poland 

Received 5 May 1992 

AbstracL lbo-dimensional superfluid states of 3He are studied within a microscopic 
model. including the effects of the ~ubslrate potential and the superllow. The energelic 
stability of thme stales is analysed. The phase lransition temperature and the critical 
superllow are found and compared with experiment. The effect of substrate coaling wilh 
‘He is diwuued. 

1. Introduction 

Progress in experimental low-temperature techniques during the last few years has 
allowed several groups [l-71 to obtain supernuid ’He in confined geometries. They 
reported the existence of superfluid currents in thin films with thickness d approaching 
the zero-temperature coherence length II 65 nm (at P = 0 bar) [l-71. Although 
experimental efforts have focused on determination of the superfluid density and the 
critical temperature T,” of the superfluid transition, the theoretical description of these 
phenomena is still not sufficient. There are studies by Fetter and Ullah [SI and Jacobsen 
and Smith [9] in which the superflow is calculated, but in the Ginzburg-Landau regime 
only. Some experiments are carried out in a different temperature limit [2] and it is 
not possible to compare them with these theoretical predictions. In this paper the 
supernuidity is studied witbin the microscopic theory and the results obtained are valid 
for all temperatures. As mentioned in our first paper [lo] for the T = 0 limit, our 
aim is to investigate the influence of the substrate potential on the superfluid state. 
One of the experimental groups [l, 4, 51 reported that both the superflow and the 
critical temperature depend strongly on the kind of substrate. These two quantities 
are considerably enhanced when the adsorbent is coated with 4He. Freeman er a1 
[6] suggested that “He atoms smooth out the substrate irregularities and change the 
scattering of 3He quasiparticles off the wall from diffuse to specular. Inour work we want 
todescribe anothereffect caused by covering the substrate with “He. Wesuggest that not 
only the kind of substrate scattering but also the interaction of 3He quasiparticles with 
the substrate through the van der Waals forces is weakened by isolating layers of “He. 
Using a simple model with a substrate potential we find measurable quantities like the 
maximal superflow j, and the critical temperature T,“. We study the two-dimensional 
states. Therefore, our results are correct for films not thicker than to, a little thinner 
than those experimentally accessible now. However, as explained further in the text, our 
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analysis may also be relevant for films with thickness d of the order of the temperature- 
dependent coherence length [( T), especially at low temperatures, which is a limit not 
covered so far in the literature. The other thickness limit for this model is d B p;', 
where p, = (37rZn)'/' is the bulk Fermi momentum and n is the bulk density of 3He. 
This condition ensures that the interactions between quasiparticles are almost the same 
as for the bulk system. 

G Harah and L Iacak 

In this paper we use the atomic units h = kB = 1. 

2. Model 

We discuss a thin film of constant thickness d. The z axis is chosen orthogonal to 
the film surface. This system is approximated by the infinite potential well [ll]: 

for0 < z < d 
for z 4 Oor z > d 

In order to study the influence of the substrate forces on the adsorbed fluid, we add 
the van der Waals-like field [12]: 

V > O  f o r O Q z < a  
for z < Oor z > a  

where V and a are the amplitude and the range of the potential, respectively. 
The potential modelling the thin film is a superposition of VI and V,: 

V ( Z )  = v,(z) + V,(Z). (2.3) 

This simple potential takes the repulsive part of the substrate field into account, 
whereas the almost flat long-range attractive part is approximated by the bottom 
of the well. This approximation is consistent with potentials calculated by means 
of variational methods [13, 141 and based on the well known Lennard-Jones or Azii 
formulae. As shown by Krotscheck et a1 [13] 4He layers isolate 3He from the substrate 
and displace it to the region of a weaker potential. The point in our approximation is 
to simulate by a step potential the effect of coating the substrate with 4He. Different 
values of the potential V,( z )  correspond to different 4He coverages of the surface. It 
should be added that potentials calculated in [13, 141 have rather intricate oscillatory 
shape and lead to the existence of some surface states. Fortunately, we deal with films 
of thickness much larger than the interatomic distance ( d  > p i ' )  and the number 
of states substantially exceeds this very limited number of bound states. That is, we 
can neglect the surface states in a macroscopic effect like superfluidity. The potential 
V ( z )  may be treated as the simplified effective mean field acting on the superfluid. 

Simple considerations show that the only parameters that characterize the 
quasiparticle energy spectrum are d / a  and V / p ,  where g is the chemical potential 
of the system. In figures 1 and 2 we show the single-particle energy spectrum e" for 
such a potential and its dependence on the above parameters for fixed g. From now 
on this field will be given by two dimensionless parameters d / a  and Vu2.  

The energy spectrum of that system is 

E " ( p )  = pZ/(2m) + U = 1 , .  . . , uc (2.4) 

where uC = max{u : e" < g ) ,  p = ( p , , p y )  is the two-dimensional momentum and 
m is the mass of the 3He atom. The Fermi momentum of the quantum State number 
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F@re 1. The single-panicle energy specrrum Figure 2. The single-panicle energy spectrum 
for d / a  = 2 and (1) 2mVaz = 90w07rz, (2 )  far 2mVaz = 10Wd and (I) d / a  = 2, (2) 
2mVoZ = lOaaO&, (3) ZmVnz = 2500~ ’  and d / a  = 1.5, (3) d / o  = 1.1 and (4) d / a  =SO; the 
(4) 2mVaz = 9 0 0 9 ;  the broken curye represents bmken curve represents the energy spectrum of the 
the energy spectrum of lhe infinite potential well. infinite porential well. 

Y is pF sin O,, where sin 29, = (1 - 
makes the energy levels unequally spaced. 

Fermi momentum p, = (37rzn)’/’ arc connected by 

/ P ) ’ / ~ .  The inclusion of the potential V,( z )  

For a given density n, the two-dimensional Fermi momentum p F  and the bulk 

3. Formalism 

We introduce the Matsubara-Green function for a non-interacting system of fermions 
in a thin film [Il ,  151: 

(3.1) 
1 Guo,(iWn9p) = [iw, - c,(P) + G I -  

where w, = (2n+l)rrT and c,(p) is defined by equation (2.4). The Green functions 
G“(iw,,,p) and Fv(iw, ,p)  for a superfluid state are determined by the Abrikosov- 
Gorkov equations [16]: 

G,(iw,,,p) = Gu0,(iw,,p) + Gu,(iw,,P)A.(P)F~(iw,,p) 

K!(iw, ,P) = - ~ ~ “ ( i w , , p ) A ~ ( p ) G ” ( i w ~  ,P).  

(3.2) 

(3.3) 

The order parameter A,(p) is found from the following self-consistent gap equation: 

(3.4) 
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where 

vuv,(6761)ep,6 = tg(661sin@ZP.sinfiw, + c o s 8 u c o s @ v , ) ( 6 m - , 6 p 6  + 6,66pt)  (3.5) 
is the p-pairing interaction for thin films [ll, 151, g is the bulk coupling constant and 
the superscript '-' in equation (3.3) denotes time inversion. 

The presence of a superflow in a system is introduced by a Galilean transformation 
[17, 181: 

p + p + m v  (3.6) 

where U is the superfluid velocity and is assumed to be independent of spatial 
coordinates. With accuracy to  linear terms in U, which is consistent with the 
assumption that U < pp/m, this transformation implies a shift of Matsubara 
frequencies: 

iw, - iw, - v .  p. (3.7) 
Since we have restricted our considerations to films of thickness d < e", the order 
parameter A,(p) is not a function of z and superfluidity is two-dimensional. The 
order parameter will be discussed more thoroughly further in the paper. 

4. lhnsition temperature 

The superfluid transition temperature T: [12] is obtained from equations (3.2)-(3.4): 

where T," is the bulk critical temperature and w, is the energy cut-off parameter. 
In calculations we have assumed wJT; = 100 according to appropriate Bardeen- 
CooperSchrieffer (BCS) relations; wc should be interpreted as the limiting upper 
value of definite quasiparticle excitations in a system. 

The critical temperature T," as a function of film thickness for some values of 
potential V (  z )  is shown in figure 3. There is qualitative agreement between presented 
relations and experimental results [2, 31. As seen from figure 3, the van der Waals 
field substantially reduces T,". This is consistent with the experimental results of 
Harrison el a1 [I, 41, when different 4He coverages of the surface correspond to 
different values of the potential V (  z). However, it is not possible to fit the measurcd 
transition temperature as a function of thickness with a simple V (  z )  field. The small 
jumps in theoretically calculated T: (see figure 3) are due to quantum size effects. 
The similar behaviour of measured T,' [2, 31 is of the same origin; however, in some 
cases it can be associated with experimental errors. 

5. Superfluid phases 

Now we turn our attention t o  the order parameter A,!p). Note that both the 
angular momentum Z and the spin S of a pair of quasiparticles are unit vectors. The 
order parameter A,(p) is represented by the spherical tensors IJ,m) [19] with J 
denoting the total angular momentum of a Cooper pair and m its projection on the  z 
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Figure 3. The phase transition temperature T: as 
a function of film thickness d for several values of 
Substrate field (I)  d l a  = 50, 2mVa' = 25M)n'; 
(2) d / a  = 40, 2mVa2 = 100M)n'; (3) d f o  = 30, 
ZmVa' = 9OooO$; (4) d / a  = 50, 2mVa2 = 
loo&; (5) d l a  = 20, 2mVa' = 1 0 0 ~ ~ ;  (6) 
d l a  = 30, 2mVa' = l W d .  The results of 
Xu and Crwker [2] are represented by the full 
squares and those of Harrison CI 01 [I, 41 by the 
o p e n  squarer (pure 3He) and the crosses (one 'He 
layer). 

axis. It is obvious that for the two-dimensional momentum p the angular momentum 
projection mL attains only two values mL = f l  and simple considerations lead to 
the representation of A,(p) by six spherical tensors IJ ,m):  

A , ( P )  = Asin~,(a,,,IO,o) + al,,ILO) + q,l l l ,  1) 

+ Q1,-111,-1) Q2,212,2) + 9,-212,-2)). (5.1) 

A J P )  = A(d(fi, v)+)iay (5.2) 

The order parameter for a p-paired system is conventionally defined as [ZO]: 

where + = (u=,ay,uz) are Pauli matrices. The vector d(@, v )  is represented by a 
tensor dij [20]: 

d,(fi,u) = dij@jsin19,. (5.3) 
Using the explicit form of the tensor I J , m )  we can write 

dij = (1/J3)a0,,6;, + (1/J2)al,o(6iY6,, - 6i16jy) + ( I / V ~ I , I ~ ~ ~ ( ~ , ~  + ibj,) 
+ (1/2)ial,-16iz(6,z - i6jy) + (1/2)a2,2(6iz + i6iy)(6jz + i6 jy )  

+ (1/2)a2,-2(6iz - i6iy)(6jz - ihjy). (5.4) 
This general form of the temor dij can also he obtained by setting f i z  = 0 in d ( $ )  
for a threedimensional superfluid [21]. 

The gap equation (3.4) can be written in a convenient form [19]: 

d . .  ~ J P J  ' . a . i u y  1 = T$dkI&akiay (5.5) 
where T is the operator acting on the right side of equation (3.4), and the upper 
and lower indices refer to spin and orbital degrees of freedom respectively. In the 
absence of a magnetic field the tensor qF is independent of spin indices: 

q'! = Tj,6;,. 

Then the gap equation (5.5) reduces to 

d . . f i .  I J  J = TjIdi,&. 
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We obtain two main unitary phases that are invariants of equation (5.7): the 
two-dimensional A phase (%A) 

dij = f i  [(ai,,+ a,,-,) 6jz +i(ai , i  - ai,-i) 6jgl hiz (5.8) 

and the two-dimensional B phase (2-B) 

dij = [ ( 1 / J 3 ) a ~ , d j z  - (l/d2)ai,u6jy16iz + [ ( 1 / J 3 ) a ~ , d j y  + (1/&)a1,~6jz16iy. 

(5.9) 

It is convenient to  transform these tensors and write the order parameter as 

d =  (8, iH,) 
(5.10) 

for the 2-A state and 

A, 4 2  
(5.12) 

A , b )  = m s i n f i .  [(AI$, - AZ$,)a, + (Az$= + Al$y)ay] ioy 

for the 2-B state. 
The amplitudes A, and A2 are determined by the gap equation (3.4) and are 

usually different for each phase. The above phases (5.10)-(5.13) are generalizations 
to the case with broken rotational symmetry of two-dimensional phases obtained by 
Brusov and Popov [22]. The superflow in the plane of the film breaks the symmetry 
of the system with respect to rotations about the z axis. However, each phase 
corresponds to a different quantum number m (the z component of the total angular 
momentum); namely the 2-A phase corresponds to m = 1 whereas the 2.8 one is 
associated with m = 0, as in the case of an unbroken rotational symmetry. The 
first of these phases may also be interpreted as the bulk phase in the proximity of 
the substrate surface with the angular momentum vector 1 orthogonal to the surface 
plane [20, 23, 241. That is, the superfluid state in films with thickness d E E (  7') 
is approximated at low temperature by the two-dimensional A phase (5.10)-(5.11). 
Also the bulk B phase, due to the orientational wall effects, can be thought of as the 
two-dimensional B phase (5.12)-(5.13) in the proximity of the surface [25]. 

It was proved [22] that the 2-A and the 2-B phases are degenerate and stable 
when there is no flow in the system. The problem of a superfluid current in the 
Ginzburg-Landau regime for thicker films ( d  > t ( T ) ) ,  where the bulk phases occur, 
was studied by Fetter and Ullah [SI. 

Next we present results of the microscopic theory for two-dimensional superfluids. 

(5.13) 
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6. The two-dimensional A phase 

The gap equation (3.4) for the 2-A phase is 

“1’ d+  sin2 + “r 

A, = 3 g N 0 - A , ~ s i n 2 t 9 ,  x l‘‘ de ;E, [tanh (g) + tanh ($$)I pod “ = I  

(6.2) 

(6.3) 

(6.4) 

where 

E, = [ (  c 2 + ;  A:cos2q5+A:sinZ+ 1 sin ’ 29 .11‘2 
E: = E, i u p ,  sin t9” cos 4. 

The solution to equations (6.1) and (6.2) was found numerically and is presented 
for various temperatures in figure 4. The supemuid gap function for finite flow has 
two non-degenerate components: the component A, perpendicular to the flow is 
enhanced whereas the component A,  parallel to the flow is suppressed. There is a 
phase transition from the 2-A phase (A,  # 0 and A, # 0) to the two-dimensional 
polar phase (A, = 0), which is only a special case of the 2 . ~  state (5.10)-(5.11). For 
sufficiently low temperatures this transition is of first order and can be determined by 
calculating the free energy Fe(Al ,A2) .  Let us remark that the gap function plays 
the role of the order parameter in the system, and the gap equations (6.1)-(6.2) are 
understood as stationary-type conditions of the free energy F,”(Al, A,). That is, 

a 
-F,”(A,,  A,) = 0 

a 
- F ~ ( A , , A , )  = 0 and a 4  a 4  . 

coincide with equations (6.1) and (6.2) respectively. Hence, the free enerby 
Ft(A, ,A2) of the system can he obtained (171 by integrating the gap equations. 
If we write equation (6.1) as f i (A , ,A , )  = 0 and equation (6.2) as f , (A , ,A , )  = 0, 
then the free energy @(Al ,  A,) is 

F,”(A,,A,) - FN = LA’ f i (A; ,A,)dA; + JGA*fz(O,A;)dA~ (6.5) 

where FN is the free energy of the normal phase. From equation (6.5) we obtain 

x Lsin2t9, E” [ t a n h ( g >  + t a n h ( g ) ]  

- !7’[ In (cosh (%>> + I n  (cosh (%>> 
- In(cosh(  e + upFsin 2T 29, cos+ 

c - upF sin f i u  cos q5 -In (cosh ( 2T 
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For the two-dimensional polar phase (2-P) we have 

G Harari and L Jacak 

F:(A2) = @(Al  = 0,A2).  (6.7) 
Phase diagrams calculated from equations (6.6) and (6.7) are shown in figure 5. The 
transition from the two-dimensional A phase to the normal state is always through 
the two-dimensional polar phase. 

Finally we determine the superflow j s  [17, 181: 

(6.8) 
1 1 

plu.n 
V j s  = -T ; ( P +  mv)G,(iw,,p) 

where V is the volume of the sample. After straightforward algebraic evaluations we 
find 

"L 

j s  = (3n2)1/3 n2I3 {up, - ( p , , d  ~ s i n Z 9 , / 6 n  
"=l 

x e s i n 2  9, l'' (It1 " I 2  d 4  71 cos4  [,an, (g) - tanh (%)I} 
Y =  I 

(6.9) 

This equation allows us to draw the superflow j s  as a function of superfluid velocity 
u (see figure 6). Comparing superflows with phase diagrams (figure 5 )  we conclude 
that the maximal superflow j ,  is attained in the 2 . ~  phase. Now it is easy to find 
the relation between the critical superflow j, and the temperature. This function 
is plotted for different values of potential V ( r )  in figure 7 ( a )  and for a constant 
potential and varying film thickness in figure 7(b). As could be expected the superflow 
jsc changes substantially with variations of the substrate field. 

Before the eventual comparison of the theorctical results with experimental data, 
we will discuss the properties of the 2-B phase. 

I. The two-dimensional B phase 

The gap equation (3.4) for the 2-8 phase is 

(7.1) 
"1' d$ cos2 C$ 

x d t  Tr [tanh (g) + tanh (g)] 

(7.3) 



Supetpow in two-dimensional slates of 'He 9539 

AF/1 .5gNo(pod)- 'Ao'  

-2.0 -4.0 -6.0 O ' O 1 ; :  , 

I - - 
-8.0 

0.00 0.50 I O 0  I 5 0  

1 

0.00 

-0.20 

-0.30 -o.lo I*,"''''- 
Figure 4. The order parameter as a function 
ol  supemuid velocity v tar the ZA phase (run 
curves) and the 2.p phase (broken curves) at (a)  
T = O.IzF, (b) T = 0.4xp and (c) T = fl.9xF, 
for the film thickness pod = 100 and potential 
constants d J a  = 100, 2mVa2 = r2. A0 = 
A(" = O,T=fl). 

Figure 5. The energy of the 2-A phase (full 
curves) and the 2-P phase (broken cuwes) versus 
the superfluid velocity U at (a )  T = O.lxp, 
( b )  T = 0.4TF and (c) T = 0.9xF, far the 
Rlm thickness pod = 100 and potential ConsItsnts 
d f a  = 100, ZmVa2= ?r2. 
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VPF/AO 

"PF 

"PF 

Figure 6. The superRow as a function of supemuid 
velocity v for the %A phase (full curves) and the 
2-P phase (broken curves) at (a) T = O.lKF, 
(b) T = O.4TF and (c) T = 0.9TF, for the 
film thickness pod  = 100 and potential constants 
d l a  = loo. 2mvo2 = &. 

and E: is defined by equation (6.4). Because this set of equations is invariant under 
the transformation A, U A2, the only quantity we can determine is A' 5 A: + A:. 
This is presented for five different temperatures in figure 8; A has the interpretation 
of the magnitude of the order parametcr for the 2-B phase. 

The methods described in section 5 lead to the formula for free energy: 

+ t a n h ( g ) ]  - $ T [ I n ( c o s h ( ~ ) ) + l n ( c o s h ( g ) )  

E + vpFsin 9, cos+ 
- In  (cosh ( 2T 

E - upp sin 9, cos + 
- I n  (cosh ( 2T (7.4) 

The superflow j ,  (6.8) is given by equation (6.9) with E, from equation (7.3). From 
equations (6.9). (7.3) and (7.4) we see that the superflow j ,  and the free energy 
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0.15 

0.10 

0.05 

0.00 

Figure 7. The critical supemow as a function of temperature. (0) At a constant 
film thickness pod = 1W and (1) d l o  = 10, 2mVa2 = 1 0 0 ~ ~ ;  (2) d l a  = 5 ,  
2 m V a 2 =  400~'; (3) d l a  = 2.9, 2mVa2  = 1 2 2 5 ~ ~ ;  (4) d / o  = 2, 2mVo2 = 2 5 0 0 ~ ~ .  
(b) A t  a con~tant potential 2mVo2 = r2 and decreasing film thickness: (1) d l o  = 100, 
pod = 100; (2) d l o  = 25. pod = 25; (3) d l o  = 10, pod  = 10. A i  is the bulk vaiw 
of the order parameter at U = 0 and T = 0. 

V P A  

Figure S. The order parameter for the 2.0 phase 
versus the superlluid velocity v at (1) T = O.lxF, 
(2) T = 0 . 3 c ,  (3) T = 0.5xF, (4) T = 
0.7TF and ( 5 )  T = 0.!3xF, for the film thickness 
pod = 1W and potential constants d / a  = 100, 
2mVa2 = 2. 

i..,.li l l lm 1 

0.00 0.50 1 .oo 1.50 

V P F h O  

Figure 9. The energy of the 28 phase (- - -), the 2. 
A phase (-) and the 2-P phase (- - -) v e n u ~  
the superfluid velocity v at T = 0.7xF, for the 
film thickness pod = 1W and potential constants 
d / a  = 100, 2mVo2 = r2, 

@(A) depend on the gap magnitude A only. Comparing equation (6.6) with 
equation (7.4) one gets Fk(v = 0 )  = @(U = 0 )  since at = 0 in both phases 
A, = A2 for symmetry reasons. The degeneracy of these phases is consistent with 
results of Brusov and Popov [22]. In the presence of a superflow the numerical 
calculations show the stability of the 2-A phase against the 2-B phase. We present 
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this result for the temperature T = 0.7Tf; in figure 9. To complete this analysis the 
superflow j, for the two-dimensional B phase is drawn in figure 10. 

G Harati and L Jacak 

mi 1.60 

Fieurc 10. The s u ~ e f l o w  of the t B  ohase versus the 
I 

supemuid velocity U at (1) T = O.lT?, (2) T = 0.3Tp, 
(3) T = O.SZF. (4) T = 0.7T! and ( 5 )  T = 0 . W p .  . ,  ~ . ,  . ,  
for the film thickness pod  = 100 and potential constants 
d l o  = 100, 2mVa' = r'. 

8. Comparison with experiment 

In this section we compare our results with the experimental data (1-71. We calculate 
the critical superllows for films with thicknesses and transition temperatures measured 
by Daunt el a1 [SI. We fit the potential V ( z )  (2.3) in order to reproduce the 
measured transition temperature T," for a given film. This procedure is single-valued. 
Next we find the critical superflow jsc as a function of temperature. The results 
obtained are drawn in figure 11. The values of j, in our model are almost an 
order of magnitude higher than the measured ones [SI. Nevertheless, we have got a 
characteristic temperature dependence of the superflow: 

which is consistent with the experimental results [3, 51. This relation holds for 
temperatures from T 2 0.2T," to T = Tf;, i.e. almost in the entire range of 
temperature (see figure 11). 

Next we calculate. the critical superflows for films investigated by Xu and Crookcr 
[2]. In figure 12 we draw the superfluid densities as a function of reduced temperature 
TIT,". They are described by a universal curve (see figure 12). The superfluid density 
psc is an order of magnitude higher than those mcasurcd by Xu and Crooker [2]. The 
conclusion is that there is a different mechanism responsible for strong suppression 
of the superflow in a thin film. However, the influence of the isolating 4He layers on 
T," (1, 41 and j, [l, 4, 6,  71 can be partially explained by a change of the substrate 
field (see figures 3 and 7(a)). Since the presented microscopic model is quite general, 
other kinds of potential V ( z )  cannot change the functions drawn in figures 11 and 12 
significantly. A potential influences the results through the energy spectrum (2.4). 
Tt reproduce a transition temperature T," appropriate to the experiment, each kind 
of potential has to give nearly the same set of energies (4.1) and cannot change 
the results. For this reason we do not discuss the applicability of the potentials uscd; 
even more realistic ones must give almost the same results. 

(8.1) 
F 312 j, a (1 - T/T,  1 
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Figure 11. The supemuid density psc versus lhe 
temperature TIT:. 
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T/T: 

Figure If. The critical superflow as a function of 
Iemxralure far films with thickness d and critical 
temperalure T,": (1) d = 1200A, T,"lT,B = 0.94; 
( 2 )  d = 1100 A. T!/T! = 0.84: 13) d = 1000 A, .. . 
T!F/Tj = 0.78. 

9. Conclusions 

We have considered three superfluid two-dimensional states of 3Hc in the presence of a 
superflow. The two-dimensional A ( 2 . ~ )  state is stabilized against the two-dimensional 
B (2-B) state by the superflow (figure 9). There is a phase transition from the 2-A state to 
the two-dimensional polar (2-P) state when the superfluid velocity increases (figure 5) .  
The maximal superflow j, is achieved in the 2-A state. For a wide range of temperature 
j, is described by the power law (8.1), which is consistent with the theoretical results 
of Jacobsen and Smith 191 and Fetter and Ullah [8] in the Ginzburg-Landau limit. 
Our theoretical results are about an order of magnitude higher than the experimental 
ones. We have tried to explain the lowered superfluidity by the  interaction of 3He 
quasiparticles with the  van der Waals-like field of the adsorbent. Whereas the effect 
of coating a substrate with 4He [l, 4, 6, 71 can be partially explained by this model, 
the measured superflow values cannot be obtained. In experiments [l-71 the onset 
of dissipation occurs at relatively low superllows. This effect may be due  to the very 
complex structure of the substrate; for instance, large-scale irregularities may cause 
the thinning effect of a film and lower the current. There are always uncertainties 
surrounding geometric characterization in these experiments. Some measuremcnE 
[l, 4, 51 are performed in the U-tube geometiy of the film-flow apparatus. Xu and 
Crooker 121 estimate that approximately the equivalent of 100 A thick film is contained 
in scratches. This is also supported by thesuggestion in [4] that the main influence of the 
substrate, rough or smooth, seems to be its influence on the film thickness. An additional 
mechanism limiting the critical current may be due to vortcx creation and motion [4,7]. 
This effect is expected to be strongly dependent on the substrate structure 1261. 

We have used several approximations in our method. The superfluid velocity 'U 

and the order parameter are assumed to be uniform in space 1181. Moreover, the gap 
function is two-dimensional, so the model is applicable rather to films with thickness 
d < F,,, We do not include the Fermi liquid forces, because we do not expect them to 
play a significant role compared to the influence of the substrate. As far as we know, 
there is no well defined Fermi liquid intcraction in the proximity of a solid surrdce. It 
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should be added that the density of an adsorbed 3He film is a function of distance from 
the substrate and in general is not constant, as assumed in OUT paper. These corrections 
to the model certainly will change the results. However, we do not believe that they will 
influence the calculated quantities substantially. 

The theory presented here can be applied to thin films with more realistic and 
more complex potential of the substrate. This can be done by a silitahle choice of 
the energy spectrum 6" (2.4). 

In the following paper we analyse the effect of surface roughness on superflow 
and stability of the superfluid states studied in this paper. 

G Haran and L Jacak 
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